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This program was focused on several novel experimental approaches to investigating charge 
injection and charge transport in organic semiconductors all using infrared (IR) spectroscopy. IR 
spectroscopy was employed to characterize polymer systems integrated in the architecture of 
organic field-effect transistors (OFET).  These experiments allowed  the PI to determine: i) the 
excitations of the studied organic semiconductors, and ii) their dynamics in high mobility 
OFETs. The PI proposed to investigate modification of the electronic properties at the surface of 
organic semiconductors controlled by self-assembled monolayers (SAM) and has completed this 
work. In addition, the PI has completed a comprehensive study of  high mobility, low band gap 
of Donor-Acceptor (D–A) copolymers that are of high interest in view of ambipolar transport in 
these systems.  
 
1. Infrared signatures of high carrier densities induced in poly(3-
hexylthiophene) by fluorinated organosilane molecules 

 
Conjugated polymers, and specifically polythiophenes, have emerged as attractive materials for 
low-cost, large-area, and flexible electronics applications due to their solution processability, 
superior film-forming properties, and high mobilities. Since most polymeric systems are intrinsic 
insulators with a moderate energy gap, it is necessary to introduce mobile charges through 
electrostatic or electrochemical doping in order to initiate electrical transport: a precondition for 
functional electronic devices. A comprehensive understanding of charge carrier dynamics in 
conjugated polymer films remains elusive, especially in the high carrier density regime near the 
insulator-to-metal  transition (IMT). The IMT region is of both practical and fundamental 
interest, and is difficult to reach in polymers given the constraints of conventional methods of 
charge injection.  
 
Recently, it became possible to achieve very high carrier densities in organic semiconductors 
through the use of fluorinated organosilane molecules. Exposure to a vapor of these highly polar 
molecules (known to self-assemble on surfaces) results in a chemical oxidation (ie hole doping) 
of the organic semiconductor host, and a several orders of magnitude increase in the DC 
electrical conductivity. The PI has carried out a thorough infrared and DC transport investigation 
of a prototypical polymer, poly(3-hexylthiophene) (P3HT), whose electronic properties were 
modified by a fluoroalkyl trichlorosilane (FTS). The FTS molecules incorporate into the 
polythiophene structure, hydrolyze, and partially cross-link, forming a 3D network that induces a 
very strong p-type doping of P3HT. 
 
The PI performed infrared transmission measurements on thin films of P3HT that were treated 
with FTS, shown in Figure 1. The PI has also fabricated organic field-effect transistors based on 



P3HT to directly compare the merits of FTS modification vs electrostatic doping on the same 
testbed. For FTS- 

doped films, we observed a prominent 
absorption band in the mid-IR indicative of 
polarons, supporting the assertion of hole doping 
via a charge-transfer process between FTS 
molecules and P3HT. Additionally, in the most 
highly-doped films with a significantly 
enhanced polaron band, we observed a 
monotonic Drude-type absorption in the far-IR, 
signifying delocalized states (black curve in Fig. 
1).  
 
The significance of this work is two-fold: the PI 
has demonstrated a novel approach to achieving 
ultra-high carrier densities in polymers, as well 
as providing a unique way to study the insulator-
to-metal transition in polythiophenes. By 

directly comparing FTS-doping to electrostatic charge injection via field-effect on the same 
device, we found at least an order of magnitude improvement in the maximum achievable carrier 
density. Using a simple capacitor model of an OFET, the PI extracted carrier densities exceeding 
10P

14
P holes/cmP

2
P for FTS-treated P3HT, surpassing the charge density limits imposed by use of 

conventional oxide insulators (roughly 10P

13
P/cmP

2
P). 

 
In the most highly-doped films, the PI observed both Drude absorption (indicative of delocalized 
states in a metal) and strong polaron absorption (associated with self-localized states). This 
intriguing result has implications for several possible theories on the evolution of the electronic 
structure of conjugated polymers through the IMT involving merging of the valence band with 
mid-gap polaron or bipolaron bands. Alternatively, coexistence of metallic and localized states 
may also be indicative of phase separation, possibly a common attribute among conducting 
polymers. The use of FTS molecules to achieve ultra-high carrier densities near the IMT has 
afforded us the opportunity to further study this relatively unexplored regime containing rich 
physics and many outstanding questions. This work is published in the Journal of Applied 
Physics. 

 
2. An infrared probe of charge injection in ambipolar organic field effect 
transistors (OFETs) 
 
A new generation of Donor-Acceptor (D–A) copolymers based on electron acceptor 
benzobisthiadiazole (BBT) are of high interest in view of potential applications for photovoltaic 
and light-emitting devices. These polymers possess extremely narrow band gaps below 1 eV, and 
when employed in OFET structures as active semiconductors reveal ambipolar transport with 
relatively high electronic mobility. Experimental studies of the electronic transport in these 
polymers are still in its infancy. Using infrared spectroscopy, the PI has performed systematic 
investigations of ambipolar charge injection in a family of BBT-based DA copolymers including 
polybenzobisthiadiazole- dithienopyrrole [PBBTPD], polybenzobisthiadiazole-

Figure 1: IR absorption of FTS-treated P3HT thin films. 
The most highly-doped films (black curve) display both 
polaronic and Drude absorption, indicative of metallic 
transport. 



dithienocyclopentane [PBBTCD], and polydiketopyrrolopyrrole-benzobisthiadiazole 
[PDPPBBT]. The latter polymer, with a DPP as donor unit, exhibits electron and hole mobilities 
exceeding 1 cmP

2
PVP

-1
PSP

-1
P. 

 
The PI designed and fabricated OFETs compatible with simultaneous electrical measurements 
and infrared monitoring of injection processes. The PI employed devices using OFET structures 
with SiOR2R and high-dielectric constant TaR2ROR5R gate insulators.  Figure 2 displays voltage-induced 

changes in IR transmission for PBBTPD and 
PBBTCD-based OFETs. We discovered a 
significant modification of the absorption 
edge under the applied electric field. The 
absorption edge reveals hardening under 
electron injection and softening under hole 
injection. This behavior is reproduced in all 
copolymer-based OFETS (including 
PDPPBBT).  
 
Increased absorption under negative gate bias 
is consistent with hole-doping of the polymer 
host, revealing both polarons and vibrational 
modes absorptions: IR signatures of charge 
injection. A suppression of the same spectral 
features is found at positive gate voltages, 
however, inconsistent with the notion of 
absorption due to injected electrons.  
 
The experimental data indicate a self-doping 
of holes in the polymer that is modified by 
charge injection. The PI found a correlation 
between the suppression of hole-induced IR 
features under positive gate voltage, and the 
mobility of the polymer. In PDPPBBT-based 
OFET devices with high electron and hole 
mobility, this ‘asymmetry’ in the IR 
transmission spectra is much more 

pronounced than in PBBTPD or PBBTCD. 
The observation of both hole-induced IR 
absorption and electronic transport in OFET 
data suggests phase separation.  

 
The importance of these results is in the implication of a phase-separated, strongly 
inhomogeneous conducting polymer, and its relation to the intrinsic ambipolarity seen in these 
systems. This work is published in Physical Review B. Exploring the role of inhomogeneities, 
and understanding the origin of high charge carrier mobility in these ambipolar polymers 
requires high-resolution real-space probes currently developed in our laboratory. 
 

Figure 2: Voltage-induced change in transmission spectra 
T (ω,VGS)/T (ω,VGS = 0 V) for structures employing (a) 
PBBTPD and (b) PBBTCD as the active semiconductor. 
Blue curves indicate n-type operation (VGS > 0 V; red 
curves indicate p-type operation (VGS < 0 V). 



3. Development of Infrared Microscopy for OFET characterization.   
 
The PI designed, developed and built a new optical microscope enabling infrared monitoring of 
the spatial profile of the injection density in the channel of organic transistors (Fig. 3a). Figure 
3b shows IR transmission spectra for a PBBTPD-based OFET biased in “ambipolar” mode, 
where the conduction channel is populated by both holes and electrons. The evolution of the 
spectra from source to drain directly reflects the electric potential across the channel, and thus 
the carrier density. The ability to glean spatial information about the distribution of both positive 
and negative charge carriers for ambipolar polymer-based OFETs is crucial in assessing 
theoretical models to describe charge transport during such device operation. 

 
Figure 3: a) Schematic of OFET biased in “ambipolar” mode of operation. b) Voltage-induced change in transmission 
spectra T(ω,VGS)/T (ω,VGS = 0 V) for PBBTPD OFET across the conduction channel. Red (blue) curves indicate a negative 
(positive) electrical potential in the channel. 

 
The use of several tunable mid-infrared lasers in conjunction with our home-built microscope 
has allowed for diffraction-limited measurements without the use of a synchrotron light source. 
This entirely novel capability is instrumental in understanding the injection length scales in 
organic ambipolar transistors. The knowledge of injection length scales has a direct impact on 
design and implementation of a wide variety of organic electronic components including 
inverters, CMOS circuits, light-emitting structures, and organic laser diodes.  
 
4. Review on Many-Body Effects in Organics Materials. 
The PI has written a comprehensive review on electrodynamics of correlated electron materials 
published in Reviews of Modern Physics. In this article he overviewed studies of the 
electromagnetic response of various classes of correlated electron materials including organic 
and molecular conductors, intermetallic compounds with d and f electrons, and others. Optical 
inquiry into correlations in all these diverse systems is enabled by experimental access to the 
fundamental characteristics of an ensemble of electrons including their self-energy and kinetic 
energy. Steady-state spectroscopy carried out over a broad range of frequencies from 
microwaves to UV light and fast optics time-resolved techniques provides complimentary 



prospectives on correlations. Because the theoretical understanding of strong correlations is still 
evolving, the review is focused on the analysis of the universal trends that are emerging out of a 
large body of experimental data augmented where possible with insights from numerical studies. 
This review covers monumental amount of literature on the optical phenomena in both organic 
and inorganic correlated electron systems and contains about 400 references.  
 
5. Publications. 
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